

Automatic Sensor Signals

Detects train and changes signal automatically to red

Used own & signal changes back to green after train short time Or link to other Sensor Signals for fully automatic block signalling Can be used on both DC & DCC - Feather & Theatre versions

Automatic Coach Lighting DC & AUTO WIRE 00 DCC AUTO FREE HO

Easy to fit - no wiring or switch - senses motion & turns on!

Turns off automatically - fits most coaches - may be cut down No pickups or wires so works on regular DC & DCC

Traditional warm white or modern cool white

Also with tail light, sparking, door beeps and door light effects

Servo Controller

Controls standard radio control servo from DCC, Track Sensor or Mimic switch

Ideal for animating Level Crossing barriers / gates, Slow points or signals, Coal hopper Easy to wire and set up - connects directly to DCC or 8-16 volts smooth DC supply

Relay Controller

Two channel Relay unit which can be controlled by Track Sensor, Sensor Signal or DCC Enables remote control of motors, solenoids, lamps etc

Incorporates two heavy duty relays with changeover contacts rated at 8-24 volts at 3 A

Automatic Train Control

Link Sensor Signals to Relay Controller for automatic trains which stop at red lights!

Can be used on DC or DCC Layouts
Easy wiring: Sensor Signal link with one wire and Isolated braking section two wires.

Also supports ABC fitted DCC Loco's for gradual slow down and speed up with sound

Tools, LEDs & Accessories

We offer a range of LED packs, battery holders, wire, switches & terminals Also handy modelling tools including precision cutters, drill bits & spare batteries

Smart Screen

00 H0

• Real working animated screen - customise with your message • Use DCC to program - then can be run on DC or DCC • Trigger messages with DCC, swtiches, track sensors or just cycle

Message can change with direction of train on both DC & DCC

Display upto 10 different messages - can also show real time clock
 Range of enclosure available - Programming service available

Small - w 31mm x h 9.5mm x d 4.5mm

• Stationary top line - bottom line automatically scrolls

SEE WWW.TRAIN-TECH.COM OR ASK FOR FREE COLOUR BROCHURE

LED 3 set of nine colour LEDs for model traffic lights

• 3 red, 3 amber & 3 green LEDs and instructions

• 3 sets of lights for LFX3 Traffic Light controller

• Or use on DC or battery using resistors supplied

www.Train-Tech.com

See our website, your local model shop or contact us for a free colour brochure Train-Tech, Gaugemaster House, Gaugemaster Way, Ford Road, Arundel, BN18 0BN Telephone 01903 884321 • email train-tech@gaugemaster.co.uk

LED3 - LED Pack

• DCC Signal Controllers - Wire in any LED signals to control from DCC accessory address Automatic Signal Controllers - Make any LED signal kit into an Automatic Signal!

• Dapol Semaphore Controllers - Control Dapol Semaphores by DCC or automatically

post & base plus detailing kit

Low cost - adapt to your own design Control by switches or signal controlle LEDs are prefitted to a narrow PCB
Ground signals - modern & original Feather & Theatre kits available Signal Head only for gantries etc

Signal Controllers

1010

LED 3 - Set of 9 Subminiature LEDs for Traffic Lights

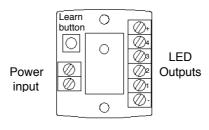
CAUTION - ALWAYS SWITCH OFF POWER TO YOUR LAYOUT BEFORE CONNECTING OR DISCONNECTING ACCESSORIES

Introduction

LED 3 Contents

- 3 Red subminiature LEDs
- 3 Amber subminiature LEDs
- 3 Green subminiature LEDs
- 9 1KΩ resistors (brown, black, red)

This set of 3 red, 3 amber and 3 green subminiature LEDs is primarily designed for use with the Train-Tech LFX3 Traffic Light effect controller but can equally well be used for other control systems or applications.


These instructions include basic information on connecting and using LEDs with LFX and regular DC supplies.

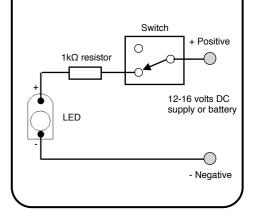
Using LEDs with LFX Controller

If using the LEDs in this set with an LFX LED controller please refer to the detailed instructions included with the LFX. It will show how to connect them and the maximum number you can use.

Please note that you do not need to use resistors with LEDs connected to an LFX as resistors have already been built into the controllers.

LFX controller

For detailed connection information see instructions supplied with the LFX


Using LEDs with a DC supply

These LEDs may be used with a standard DC power supply or battery.

If using them on a DC supply it is very important to connect a resistor in series (in between) the LED and the power supply or permanent damage to the LED will result.

This pack includes a $1K\Omega$ resistor for every LED supplied.

Wiring LED, switch and resistor

General information on LEDs

LEDs are really useful lights which, unlike their conventional filament bulb counterparts, are robust, low power and if used correctly can effectively last forever. But there are important considerations to using them.

LED stands for Light Emitting Diode and a diode is an electronic component which only works electrically in one direction, so always need to be fitted the correct way round to work correctly and last. Whilst LED's will work on AC (alternating current or DCC which is a form of AC) for a while, continuous use on AC or reverse connection will reduce the life. Most standard miniature LEDs which a modeller will use must only have a maximum voltage of 2 to 3 volts applied, so current flowing through the LED needs to be reduced and this is usually done by a resistor in series (in between), typically 1000 ohms for a 12 V supply. However to make wiring easier for modellers all Train-Tech LFX and Signal LED controllers already have resistors built in so that LEDs can connect directly to the module without the need for any resistors.

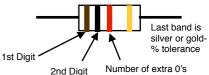
Train-Tech also offer packs of various LEDs for modellers and these always come with instructions and also suitable resistors for using them on a standard Model Railway 12V DC supply.

LED connections

As explained previously most LEDs have a polarity and must be connected the correct way round to light. The most popular LEDs come in 3mm and 5mm diameter cases and look similar to this:

The best indication of polarity on this type of LED is to find the flat side on the round base. This side usually indicates the negative (Cathode) connection and the other wire the positive (Anode) connection to power.

Another very small LED we supply for some Train-Tech products looks like this:


There are many LEDs on the market and it is good to experiment, but check manufacturers data for specific connection information as there are no real standards.

Remember to always use a resistor in series with the LED when using it on a standard DC power supply or battery.

Resistors

We offer the following for interest only - a modeller does not usually have to know what a component does, just when to use it. Resistors are probably the most commonly used electronic component. They offer a resistance to flow of current in a circuit by converting the 'resisted' energy into heat, though in practice you will not usually be able to detect the heat dissipated because of the small amounts of power usually involved. Every resistor has a resistance value measured in ohms. often shown as Ω or sometimes R. The resistors supplied with our LEDs are $1K\Omega$; 1 kilo ohm or 1000 ohms. There are many different values of resistor and most are colour coded to indicate their value. For interest, this is the colour code system in case you ever need to identify one:

ыаск	Ü	Green	5
Brown	1	Blue	6
Red	2	Violet	7
Orange	3	Grey	8
Yellow	4	White	9

So a $1000\Omega(1k\Omega)$ resistor is colour coded: Brown = 1; Black = 0; Red = 0 0